Ab Initio and Density Functional Studies of HOBr-H₂O and BrONO₂-H₂O Complexes

Liming Ying and Xinsheng Zhao*

Department of Chemistry, Peking University, Beijing 100871, China Received: September 23, 1996; In Final Form: March 6, 1997[®]

Ab initio and density functional investigations of HOBr $-H_2O$ and BrONO₂ $-H_2O$ complexes were performed. For HOBr $-H_2O$ complex, structures and vibrational frequencies were determined at MP2 and B3LYP levels of theory with basis sets up to 6-311++G(d,p), and binding energies were obtained from MP4/6-311++G-(2df,2pd) single-point energy calculations. Two C_s symmetry conformers were found, and the binding energies including ZPE correction are 5.6 and 5.4 kcal mol⁻¹ for the syn and anti conformers, respectively. Electron correlation is important in determining the equilibrium structure of BrONO₂ $-H_2O$ complex which has a C_s equilibrium structure at HF/6-311G(d,p) level but slightly deviates from it at B3LYP/6-311G(d,p) level. The bromine atom acts as an electron acceptor in the complex. The ZPE corrected binding energy determined at B3LYP/6-311++G(2df,2p) level is 4.0 kcal mol⁻¹.

Introduction

Bromine compounds are considered to be connected with the ozone depletion in the stratosphere.^{1–3} These compounds are minor constituents of the stratosphere, yet they are suggested to have greater ozone destruction potential than chlorine compounds.^{4,5} Hypobromous acid (HOBr) and bromine nitrate (BrONO₂) are two major bromine reservoir species in the atmosphere. HOBr can be formed in the atmospheric reaction of HO₂ with BrO:^{2,6}

$$HO_2 + BrO \rightarrow HOBr + O_2 \tag{1}$$

or by the heterogeneous reaction of $BrONO_2$ on the surface of aerosol particles, as is the case of $CIONO_2$:⁷⁻⁹

$$BrONO_2 + H_2O \rightarrow HOBr + HNO_3$$
(2)

The photolysis of HOBr in the lower atmosphere produces bromine, which leads to an important catalytic cycle for ozone destruction:¹⁻³

$$HO_2 + BrO \rightarrow HOBr + O_2 \tag{1}$$

$$HOBr + h\nu \rightarrow OH + Br \tag{3}$$

$$Br + O_3 \rightarrow BrO + O_2$$
 (4)

$$OH + O_3 \rightarrow HO_2 + O_2 \tag{5}$$

net:
$$2O_3 \rightarrow 3O_2$$

Hydrolysis of halogen nitrate is very slow in the gas phase, but it proceeds readily on cold water—ice surface.^{7–9} Therefore, the characterization of the interaction of halogen reservoir species with water which is the most abundant molecules in polar stratospheric cloud (PSC) will be helpful to the understanding of the mechanism of the heterogeneous catalytic reaction for the reservoir species.

HOBr has been extensively studied. Both vibrationally averaged structure¹⁰ and fundamental frequencies¹¹ have been experimentally deduced or observed. Recent high level ab initio¹² and experimental^{13–16} investigations have determined the heat of formation of HOBr. The CCSD/TZ2P geometry

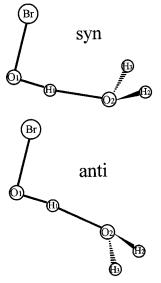


Figure 1. Equilibrium structures of the syn and anti conformers of the HOBr $-H_2O$ complex.

and vibrational frequency obtained by Lee^{17} are in good agreement with the experimental data.

The gas-phase structure of BrONO₂ was established only 3 years ago from electron diffraction data.¹⁸ The IR spectra of gas-phase and matrix-isolated BrONO₂ strongly support a planar structure for BrONO₂, similar to the structure of HONO₂ and ClONO₂.¹⁹ We are aware of only one theoretical study of BrONO₂. The equilibrium structure optimized at the Hartree–Fock level with DZP basis reported by Rayez and Destriau²⁰ does not match the experimental structure well in today's view. Therefore, a higher level theoretical calculation of BrONO₂ is required.

In this paper, we report ab initio and density functional studies of the molecular structures, vibrational frequencies of HOBr, BrONO₂, HOBr-H₂O, and BrONO₂-H₂O and the binding energies of HOBr and BrONO₂ with water. Comparisons to the corresponding HOCl-H₂O²¹ and ClONO₂-H₂O²² complexes will also be made.

Methods of Calculation

Ab initio and density functional calculations have been performed with the GAUSSIAN 94 programs²³ on a DEC Alpha

S1089-5639(96)02915-5 CCC: \$14.00 © 1997 American Chemical Society

[®] Abstract published in Advance ACS Abstracts, April 15, 1997.

TABLE 1: Calculated Geometry Parameters for HOBr, H₂O, and HOBr–H₂O Complex (Distance *R* in angstroms, Bond Angle α and Dihedral Angle δ in degrees)

species	parameter	MP2/6-311G(d,p)	MP2/6-311++G(d,p)	B3LYP/6-311G(d,p)	B3LYP/6-311++G(d,p)	expt ^a
HOBr	R(OH)	0.965	0.967	0.967	0.968	0.961
	R(BrO)	1.860	1.861	1.871	1.870	1.834
	a(BrOH)	101.2	102.2	102.3	103.2	102.3
H_2O	R(OH)	0.958	0.960	0.962	0.962	0.957
	a(HOH)	102.4	103.4	103.8	105.1	104.5
syn	$R(BrO_1)$	1.852	1.852	1.866	1.865	
	$R(H_1O_1)$	0.977	0.977	0.982	0.980	
	$R(O_2H_1)$	1.793	1.825	1.788	1.820	
	$R(H_2O_2)$	0.960	0.961	0.963	0.963	
	$\alpha(H_1O_1Br)$	100.8	102.0	101.9	103.2	
	$\alpha(O_1H_1O_2)$	174.0	178.1	173.9	179.5	
	$\alpha(H_2O_2H_3)$	103.7	104.4	105.2	106.2	
	$\delta(BrO_1H_1O_2)$	0.0	0.0	0.0	0.0	
	$\delta(O_1H_1O_2H_2)$	58.8	64.8	58.7	67.4	
anti	$R(BrO_1)$	1.852	1.853	1.866	1.865	
	$R(H_1O_1)$	0.976	0.976	0.981	0.980	
	$R(O_2H_1)$	1.785	1.822	1.784	1.815	
	$R(H_2O_2)$	0.959	0.961	0.963	0.963	
	$\alpha(H_1O_1Br)$	101.3	102.4	102.5	103.8	
	$\alpha(O_1H_1O_2)$	176.5	175.7	174.2	173.1	
	$\alpha(H_2O_2H_3)$	104.0	104.5	105.5	106.1	
	$\delta(BrO_1H_1O_2)$	180.0	180.0	180.0	180.0	
	$\delta(O_1H_1O_2H_2)$	60.9	64.8	60.1	64.7	

^a HOBr from ref 11; H₂O from ref 31.

TABLE 2: Vibrational Frequencies (cm⁻¹) of HOBr, H₂O, and HOBr–H₂O Complex

species	sym	mode no.	approx assignment	MP2/6-311G(d,p)a	MP2/6-311++G(d,p) ^a	B3LYP/6-311G(d,p)	B3LYP/6-311++G(d,p)	expt ^b
HOBr	A'	1	OH str	3839	3825	3786	3787	3610
		2	bend	1167	1143	1173	1152	1163
		3	BrO str	619	617	621	621	620
H_2O	B_2	1	asym OH str	4011	4001	3905	3922	3943
	A_1	2	sym OH str	3904	3884	3809	3817	3832
		3	bend	1668	1630	1639	1603	1648
syn	A'	1	OH _w sym str	3889	3873	3809	3817	
		2	OH _{Br} str	3626	3638	3506	3549	
		3	HOH _w bend	1657	1643	1630	1619	
		4	HOBr bend	1334	1279	1332	1280	
		5	BrO str	628	628	615	619	
		6	HOH _w rock	332	293	323	227	
		7	H-bond str	237	211	254	216	
		8	dimer rock	78	66	88	75	
	Α″	9	OH _w asym str	3996	3986	3906	3918	
		10	H-bond wag	768	725	773	727	
		11	torsion	235	234	248	226	
		12	HOH wag	51	21	12	10	
anti	A'	1	OH _w sym str	3893	3874	3811	3813	
		2	OH _{Br} str	3642	3644	3525	3550	
		3	HOH _w bend	1653	1639	1627	1620	
		4	HOBr bend	1329	1281	1321	1281	
		5	BrO str	631	628	617	616	
		6	HOH _w rock	295	293	290	269	
		7	H-bond str	229	202	230	204	
		8	dimer rock	71	62	73	68	
	Α″	9	OH _w asym str	4002	3988	3910	3914	
		10	H-bond wag	768	745	766	735	
		11	H ₂ O wag	218	217	224	222	
		12	HOH wag	45	53	41	61	

^a MP2 vibrational frequencies of the HOBr-H₂O complex were calculated by a numerical method. ^b HOBr from ref 12; H₂O from ref 31.

TABLE 3: MP2/6-311++G(d,p) Vibrational Frequency Shifts (cm^{-1}) of H₂O and HOBr upon Complexation

species	mode		$\Delta \nu$ anti	species	mode	$\Delta \nu$ syn	$\Delta \nu$ anti
H ₂ O	asym OH str sym OH str bend	-11	-10	HOBr	OH str bend BrO str	+136	+138

3000/300 workstation. For HOBr and HOBr $-H_2O$ complex, all equilibrium geometries were optimized at the MP2 (frozen core) level of the theory²⁴ and with the density functional

B3LYP approach, i.e., the Becke's three-parameter nonlocal exchange functional²⁵ with the nonlocal correlation functional of Lee, Yang, and Parr.²⁶ Two basis sets have been used for geometry optimization: 6-311G(d,p) and 6-311++G(d,p) which include polarization functions for both heavy atoms and hydrogen, and for the latter, the diffuse functions were also added. Here the 6-311G stands for the 6-311G basis for the first-row atoms, the McLean-Chandler (12s,9p) \rightarrow (621111,-52111) basis sets for the second-row atoms²⁷ and the 6-311G basis set of McGrath, Curtiss, and co-worker's for bromine.^{28,29}

TABLE 4: Calculated Absolute Energies and Binding Energies of the HOBr-H₂O complex^a

theory level	H_2O	HOBr	syn	anti	$\Delta { m syn}^b$	$\Delta \operatorname{anti}^b$
MP2/6-311G(d,p)	-76.263 97	-2648.101 09	-2724.380 86	-2724.380 41	7.9	7.5
MP2/6-311++G(d,p)	-76.274 92	-2648.10965	-2724.397 63	-2724.397 63	6.2	6.1
B3LYP/6-311G(d,p)	-76.447 45	-2649.937 32	-2726.401 28	-2726.40076	8.2	7.9
B3LYP/6-311++G(d,p)	-76.458 53	-2649.943 88	-2726.414 58	-2726.414 51	5.6	5.5
MP4/6-311++G(d,p)/B3LYP/6-311++G(d,p)	-76.287 17	-2648.136 09	-2724.436 21	$-2724.436\ 20$	6.1	6.0
MP4/6-311++G(2d,2p)//B3LYP/6-311++G(d,p)	-76.309 17	-2648.16278	-2724.483 87	-2724.483 69	5.5	5.3
MP4/6-311++G(2df,2pd)//B3LYP/6-311++G(d,p)	-76.334 09	-2648.223 29	-2724.569 52	-2724.569 29	5.6	5.4

^a Absolute energies in hartrees. ^b Binding energies in kcal mol⁻¹, and ZPE correction is included.

TABLE 5: Calculated Geometry Parameters for BrONO₂ (Distance R in angstroms and Angle α in degrees)

		-		-	-	-	
parameter	HF/6-311G	HF/6-311G(d)	MP2/6-311G	MP2/6-311G(d)	B3LYP/6-311G	B3LYP/6-311G(d)	expt ^a
$R(BrO_1)$	1.863	1.815	1.927	1.855	1.918	1.866	1.829
$R(O_1N)$	1.377	1.360	1.657	1.515	1.529	1.483	1.456
$R(O_2N)$	1.213	1.169	1.235	1.193	1.231	1.191	1.205
$R(O_3N)$	1.205	1.165	1.240	1.196	1.231	1.192	1.205
$\alpha(BrO_1N)$	118.9	117.8	111.8	113.3	115.3	115.3	113.9
$\alpha(O_1NO_2)$	118.6	118.5	117.5	117.9	118.3	118.3	119.5
$\alpha(O_1NO_3)$	112.7	111.6	107.0	108.0	108.8	108.8	106.6

^a From ref 19.

TABLE 6: Fundamental Vibrational Frequencies (cm⁻¹) and IR Intensities (km/mol) of BrONO₂

mo	ode	approx assignment	MP2/6-311G	MP2/6-311G(d)	B3LYP/6-311G	B3LYP/6-311G(d)	expt ^a
A'	<i>v</i> 1	NO ₂ asym str	1878	1951	1612	1791(320)	1714(vs)
	ν_2	NO ₂ sym str	1163	1319	1209	1341(307)	1288(vs)
	ν_3	NO ₂ scissors	712	795	754	827(218)	806(vs)
	ν_4	BrO_1 str	655	739	699	739(0.5)	750(vs)
	ν_5	O_1NO_2 ip bend	398	502	530	563(86)	572(vs)
	ν_6	$O_1 N$ str	279	383	362	390(1.6)	394
	ν_7	BrO ₁ N bend	175	212	187	206(0.06)	245(w)
Α″	$\nu 8$	O_1NO_2 op bend	619	723	665	735(14)	728(mw)
	ν_9	torsion	97	112	96	107(0.6)	

^a From ref 20. ν_6 was deduced from overtone. All the frequencies were measured in the gas phase except ν_7 , which was obtained in the solid.

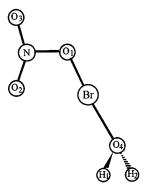


Figure 2. Equilibrium structure of the BrONO₂-H₂O complex.

Analytic or numerical MP2 and analytic B3LYP vibrational frequencies were calculated for optimized geometries. Singlepoint energies were determined at MP4(SDTQ) level with several larger basis sets: 6-311++G(d,p), 6-311++G(2d,2p), and 6-311++G(2df,2pd), and B3LYP frequencies were used for the zero-point energy (ZPE) correction to the binding energy of HOBr with water. It was estimated that the error in the binding energy for the MP4/6-311++G(2df,2pd) calculation was 0.5 kcal mol⁻¹.

For BrONO₂ and BrONO₂-H₂O, the equilibrium structures were optimized at the Hartree–Fock, MP2, or B3LYP levels with 6-311G and 6-311G(d,p) basis sets, and vibrational frequencies were also calculated at corresponding equilibrium structures. Single-point energies were calculated at B3LYP level with 6-311++G(d,p), 6-311++G(2d,p), and 6-311++G-(2df,2p) basis sets. It was difficult to give error bars for B3LYP calculations, but we estimated that the error in the binding energy for the B3LYP/6-311++G(2df, 2p) was less than 1.5 kcal mol⁻¹.

Results and Discussion

HOBr–H₂O Complex. The optimized equilibrium structures of the monomers and the complex are listed in Table 1. Results of HOBr and H₂O at these four theory levels are all consistent with the experiment.^{10,30} The calculated Br–O bond length is about 0.03 Å longer than the experiment. Lee¹⁷ has obtained a more accurate Br–O bond length using a higher CCSD(T) method indicating that the treatment of electron correlation is important to the prediction of the Br–O bond length.

We have found two conformers of HOBr-H₂O complex, both with C_s symmetry, as depicted in Figure 1. The conformers differ by the orientation of the water molecule with respect to the bromine, which is either syn or anti to the bromine atom. These two structures are similar to that of recent reported HOCl-H₂O complex.²¹ However, at the lower Hartree-Fock level of theory, only one syn conformer was found, suggesting the importance of electron correlation. The hydrogen bond length of HOBr-H₂O is about 1.82 Å, a little longer than that of corresponding HOCl-H2O complex and much smaller than that in water dimer,³¹ which basically reflects the sequence of hydrogen bond strength of this series of complexes. Formation of the hydrogen bond causes small changes in HOBr and H₂O molecular geometries. The most significant variation in HOBr is the O-H bond, which is lengthened by 0.009-0.012 Å. The Br-O bond length is shortened by about 0.005 Å. The O-H bond length in H₂O remains almost unaffected, but the H-O-H bond angle increases by 1.0°.

Table 2 shows the approximate assignments and frequencies

TABLE 7: Calculated Geometry Parameters for BrONO₂-H₂O Complex (Distance *R* in angstroms, Bond Angle α and Dihedral Angle δ in degrees)

	0 0	
parameter	HF/6-311G(d,p)	B3LYP/6-311G(d,p)
$R(BrO_1)$	1.833	1.904
$R(O_1N)$	1.344	1.437
$R(O_2N)$	1.173	1.200
$R(O_3N)$	1.169	1.199
$R(O_4Br)$	2.630	2.523
$R(O_4H_1)$	0.942	0.964
$R(O_4H_2)$	0.942	0.964
$\alpha(BrO_1N)$	118.4	115.8
$\alpha(O_1NO_2)$	118.7	118.8
$\alpha(O_1NO_3)$	112.5	110.4
$\alpha(O_1BrO_4)$	177.1	177.7
$\alpha(H_1O_4Br)$	120.6	107.6
$\alpha(H_2O_4Br)$	120.6	107.6
$\alpha(H_1O_4H_2)$	106.8	105.3
$\delta(O_2NO_1Br)$	0.0	0.0
$\delta(O_3NO_1Br)$	180.0	180.0
$\delta(NO_1BrO_4)$	180.0	180.0
$\delta(H_1O_4BrO_1)$	111.2	123.9
$\delta(H_2O_4BrO_1)$	-111.2	-123.1

 TABLE 8: Calculated Vibrational Frequencies (cm⁻¹) of BrONO₂-H₂O Complex

mode	approx assignment	HF/6-311G(d,p)	B3LYP/6-311G(d,p)
1	OH _w sym str	4132	3791
2	NO2 asym str	1897	1742
3	HOH _w bend	1753	1622
4	NO ₂ sym str	1555	1332
5	NO ₂ scissors	1097	850
6	BrO str	908	752
7	ONO ₂ ip bend	807	618
8	ON str	445	409
9	BrO _w str	266	380
10	BrON bend	223	224
11	BrOH _w rock	153	186
12	dimer rock	74	72
13	OH _w asym str	4231	3892
14	ONO ₂ op bend	903	754
15	BrOw wag	380	464
16	NOBr tosion	144	164
17	dimer torsion	63	64
18	BrOH _w wag	22	36

of vibrational modes of HOBr—H₂O complex and corresponding monomers. In general, the B3LYP frequencies agree with the experiment better than the MP2 frequencies for both HOBr and H₂O. The most significant discrepancy appears in the OH stretch mode of HOBr, the calculated frequency overestimates by 5%. But with the same method, the predicted OH stretch frequency of H₂O is in good agreement with the experiment. For the ease of comparison, the vibrational frequency shifts of HOBr and H₂O upon complexation, which were computed at MP2/6-311++G(d,p) level, are shown in Table 3. The basic trend of shifts is the same as that of HOC1–H₂O complex,²¹ indicating the similar character of both complexes. As a result of geometry change in HOBr after complexation, especially in O-H bond length, significant changes take place in the OH stretch mode and the bend mode of HOBr. An experimental study of HOBr-H₂O complex is required to testify above theoretical predictions.

Table 4 shows the binding energies of the two HOBr-H₂O conformers at different theory levels. The binding energies are ZPE corrected at the B3LYP/6-311++G(d,p) level. Adding diffuse functions to both heavy atoms and hydrogen reduces the binding energies substantially. The binding energies seem to converge at the MP4/6-311++G(2d,2p) level, since increasing the basis set to 6-311++G(2df,2pd) changes little on the binding energies. The less expensive B3LYP/6-311++G(d,p)single-point calculation well reproduces the results of MP4 calculation using larger basis set which require more CPU and disk storage, indicating the potential application of the former towards larger system. The syn conformer is about 0.2 kcal mol⁻¹ more stable, in agreement with that of the HOCl-H₂O complex²¹ and in contrast to the water dimer.³¹ On the basis of our results, the intermolecular hydrogen bond in HOBr-H₂O complex is a bit weaker than that in HOCl-H₂O complex.

BrONO₂-H₂O Complex. The equilibrium structure of BrONO₂ was investigated at the HF, MP2, and B3LYP levels with 6-311G and 6-311G(d) basis sets, as shown in Table 5. A planar structure of BrONO2 is confirmed. Considering the uncertainties of experimental values of vibrationally averaged structure, both the MP2/6-311G(d) and B3LYP/6-311G(d) optimized geometries are in accord with experiment. Including electron correlation and adding diffuse functions to the basis set are essential to quantitatively predict the BrONO₂ structure, and the accuracy here is lower than the HOBr-H₂O system. The largest discrepancy with the experiment appears in Br-O₁ and O₁-N bond lengths. The B3LYP method overestimates these two bond lengths by about 0.03 Å, while the MP2 method overestimates the O₁-N bond length by 0.06 Å. Table 6 lists the harmonic frequencies and IR intensities of BrONO₂. The B3LYP/6-311G(d) method again predicts both the vibrational frequencies and their intensities quite well. Our calculations have shown that for the BrONO2 system which has a third-row atom, the B3LYP method is a prior choice if electron correlation should be considered.

Manna³² recently investigated the interaction of chlorine nitrate (ClONO₂) with water at the HF/4-31G level with an optimization of only the parameter directly involved in the interaction and found that the strongest interaction between ClONO₂ and water involves the oxygen atom of water and chlorine atom of ClONO₂, which is a factor of about 3 stronger than the interaction involving the oxygen atom of ClONO₂ with a hydrogen atom of water. We performed full optimization of the ClONO₂-H₂O complex at HF with 6-31G(d) basis set and found three equilibrium geometries.²² Further MP2 and B3LYP level optimizations were performed with 6-31G(d) and 6-311G-(d,p) basis sets on the most stable geometry.²² A C_s symmetry for the complex was found with the HF and MP2 methods. With

TABLE 9: Calculated Absolute Energies and Binding Energies of BrONO₂-H₂O Complex (Absolute Energies in hartrees, Binding Energies in kcal/mol)

H_2O	BrONO ₂	BrONO ₂ -H ₂ O	binding energy ^a
-76.047 01	-2 851.235 81	-2 927.295 65	6.2
-76.457 65	-2 854.453 61	-2 930.923 04	5.6
-76.45862	-2854.46033	-2 930.929 52	4.8
-76.461 85	-2 854.474 21	-2 930.945 54	4.2
-76.447 45	-2854.45409	-2 930.917 64	8.2
-76.45849	-2 854.463 82	-2 930.933 52	5.2
-76.459 53	-2 854.469 69	-2 930.939 80	4.8
-76.462 57	-2854.48223	-2 930.954 19	4.0
	$\begin{array}{r} -76.047\ 01\\ -76.457\ 65\\ -76.458\ 62\\ -76.461\ 85\\ -76.447\ 45\\ -76.458\ 49\\ -76.459\ 53\end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^a ZPE correction is included.

hybrid density functional method B3LYP, it was found that the ClONO₂-H₂O complex slightly breaks the C_s symmetry. With a similar procedure and similar to the results of ClONO₂-H₂O complex,²² among the stable structures the bromine atom of BrONO₂ acts as an electron acceptor and the oxygen atom of water acts as an electron donor in the most stable structure. The optimized BrONO₂-H₂O geometry, its parameters and its vibrational frequencies are shown in Figure 2 and Tables 7 and 8. As expected, the C_s symmetry structure is a true minimum at the Hartree–Fock level but is a transition state with the B3LYP method since it has one imaginary frequency. The equilibrium structure of the BrONO₂-H₂O complex at B3LYP level slightly deviates from the C_s symmetry.

Like the conventional hydrogen bond, the O–Br···O configuration is nearly linear in the complex, as illustrated in Figure 2. The most significant change of BrONO₂ upon complexation is that the Br–O₁ bond length increases while the O₁–N bond length decreases. The binding energies were calculated up to the B3LYP/6-311++G(2df,2p) level with HF/6-311G(d,p) and B3LYP/6-311G(d,p) optimized structures, respectively, as shown in Table 9. Similarly, the binding energies reduces substantially by adding the diffuse functions to both heavy atoms and hydrogen. The binding energy is larger by 1.8 kcal mol⁻¹ than that of the ClONO₂–H₂O complex.²² On the basis of our results of BrONO₂–H₂O complex, it may indicate that as soon as the BrONO₂ molecule is absorbed by the cold aerosols in the stratosphere, it sticks to the ice surface through Br atom.

Conclusion

We have found two C_s conformers of the HOBr-H₂O complex in which the syn conformer is more stable. The BrONO₂-H₂O complex also has a C_s equilibrium structure at the HF level but slightly breaks the C_s symmetry when hybrid DFT method B3LYP is used. The binding energies of the two complexes HOBr-H₂O and BrONO₂-H₂O are substantial, suggesting the importance of the interactions of these reservoir molecules with water in the stratosphere.

Acknowledgment. This work has been supported by NSFC under Project No. 29425004. The authors wish to thank a referee for a valuable suggestion on the technique to find the equilibrium structure of the $BrONO_2-H_2O$ complex and many other suggestions. In addition, the authors thank Dr. D. J. Fox of Gaussian Inc. for kind assistance.

References and Notes

(1) Yung, Y. L.; Pinto, J. P.; Watson, R. T.; Sander, S. P. J. Atom. Sci. 1980, 37, 339.

(2) Poulet, G.; Pirre, M.; Maguin, F.; Ramaroson, R.; Le Bras, G. Geophys. Res. Lett. 1992, 19, 2305.

(3) Garcia, R. R.; Solomon, S. J. Geophys. Res. 1994, 99, 12937.

(4) Yagi, K.; Williams, J.; Wang, N.-Y.; Cicerone, R. J. Science 1995, 267, 1979.

(5) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina, M. J. *Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling*; Evaluation Number 11, Dec 15, 1994: NASA JPL Publication 94-26.

(6) Bridier, I.; Veyret, B.; Lesclaux, R. Chem. Phys. Lett. 1993, 201, 563.

(7) Molina, M. J.; Tso, T.-L.; Molina, L. T.; Wang, F. C.-Y. Science 1987, 238, 1253.

(8) Tolbert, M. A.; Rossi, M. J.; Malhotra, R.; Golden, D. M. Science 1987, 238, 1258.

(9) Leu, M.-T. Geophys. Res. Lett. 1988, 15, 17.

(10) Koga, Y.; Takeo, H.; Kondo, S.; Sugie, M.; Matsumura, C.; McRae, G. A.; Cohen, E. A. *J. Mol. Spectrosc.* **1989**, *138*, 467.

(11) Jacox, M. E. J. Phys. Chem. Ref. Data 1994, Monograph No. 3.

(12) McGrath, M. P.; Rowland, F. S. J. Phys. Chem. 1994, 98, 4773.

(13) Lock, M.; Barnes, R. J.; Sinha, A. J. Phys. Chem. 1996, 100, 7972.

(14) Kukui, A.; Kirchner, U.; Benter, T.; Schindler, R. N. Ber. Bunsen-Ges. Phys. Chem. 1996, 100, 455.

(15) Orlando, J. J.; Berkholder, J. B. J. Phys. Chem. 1995, 99, 1143.

(16) Russic, R.; Berkowitz, J. J. Chem. Phys. 1994, 101, 7795.

(17) Lee T. J. J. Phys. Chem. 1995, 99, 15074.

(18) Casper, B.; Lambotte, P.; Minkwitz, R.; Oberhammer, H. J. Phys. Chem. 1993, 97, 9992.

(19) Wilson, W. W.; Christe, K. O. Inorg. Chem. 1987, 26, 1573.

(20) Rayez, M. T.; Destriau, M. Chem. Phys. Lett. 1993, 206, 278.

(21) Dibble, T. S.; Francisco, J. S. J. Phys. Chem. 1995, 99, 1919.

(22) Ying, L.; Zhao, X. J. Phys. Chem., submitted.

(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J. *Gaussian 94*, Revision B.3; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. Gaussian, Inc.: Pittsburgh, PA, 1995.

(24) Møller, C.; Plesset, M. S. Phys. Rev. 1934, 46, 618.

(25) (a) Becke, A. D. J. Chem. Phys. **1993**, 98, 5648. (b) Becke, A. D. J. Chem. Phys. **1992**, 96, 2155. (c) Becke, A. D. J. Chem. Phys. **1992**, 97, 9173.

(26) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. 1988, B37, 785.

(27) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.

(28) McGrath, M. P.; Radom, L. J. Chem. Phys. 1991, 94, 511.

(29) Curtiss, L. A.; McGrath, M. P.; Blaudeau J.-P.; Davis, N.; Binning, R. C., Jr.; Radom, L. J. Chem. Phys. **1995**, 103, 6104.

(30) Benedict, W. S.; Gailer, N.; Plyer, E. K. J. Chem. Phys. 1956, 24, 1139.

(31) Xantheas, S. S.; Dunning, T. H., Jr. J. Chem. Phys. 1993, 99, 8774.
(32) Manna, G. L. J. Mol. Struct. (THEOCHEM) 1994, 309, 31.